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This paper treats a liquid-metal flow through a sharp elbow connecting two constant- 
area, rectangular ducts with thin metal walls. There is a uniform, strong magnetic 
field in the plane of the ducts’ centrelines, and the velocity component normal to the 
magnetic field is in opposite directions upstream and downstream of the elbow. The 
magnetic field is sufficiently strong that inertial effects are negligible everywhere and 
viscous effects are confined to boundary layers and to an interior layer lying along 
the magnetic field lines through the inside corner of the elbow. The interior layer 
involves large velocities parallel to the magnetic field and carries roughly half of the 
flow between the upstream and downstream ducts for the case considered. 

1. Introduction 
An elbow in the plane of a locally uniform magnetic field arises in several 

technologically important liquid-metal magnetohydrodynamic (MHD) flows. For 
example, several recent designs for liquid-lithium cooling systems for magnetic- 
confinement fusion reactors involve an elbow between a duct which is nearly 
perpendicular to the local magnetic field and a duct which is nearly parallel to the 
field (Smith et al. 1985; Malang et al. 1988). For fully developed flow in an infinitely 
long, constant-area duct with a skewed, uniform magnetic field, the pressure gradient 
is proportional to a&, B: sin2 a, where a is the electrical conductivity of the liquid 
metal, U, is the average velocity parallel to the duct’s centreline, B, is the strength 
of the magnetic field and a is the angle between the magnetic field and the duct’s 
centreline. In  the fusion-reaction designs, the ducts near the plasma are nearly 
parallel to the local magnetic field, so that the high velocity needed for adequate heat 
removal can be achieved with acceptable pressure drop because sin a is relatively 
small. The feeder ducts further from the plasma must be nearly perpendicular to the 
magnetic field, but U, can be much smaller here because these ducts receive very little 
energy from the plasma. 

The fusion-reactor design studies indicate the importance of three unanswered 
questions about the three-dimensional flow in the elbow between a nearly parallel 
and a nearly perpendicular duct. Is the elbow pressure drop so large that it negates 
the benefit of making the energy-collecting ducts nearly parallel to the local field ? 
Does the three-dimensional flow in the elbow involve a large or small velocity along 
the elbow wall near the plasma ? Does the flow in the nearly parallel duct deviate 
from fully developed for a long distance from the elbow ? While the present study is 
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motivated by the need for reliable fusion-reactor design predictions, our objective is 
a basic understanding of liquid-metal Aows in sharp elbows in the plane of strong, 
uniform magnetic field. 

Four important dimensionless parameters are the magnetic Reynolds number R,, 
the interaction parameter N, the Hartmann number M and the wall conductance 
ratio c, defined by 

Here, ,up, p and ,U are the magnetic permeability, density and viscosity of the liquid 
metal; L is the characteristic dimension of the duct’s cross-section; cW and t are the 
electrical conductivity and thickness of the duct’s walls. There is an ‘applied’ 
magnetic field, which is produced by the superconducting coils and the plasma 
current in a magnetic-confinement fusion reactor, and there is an ‘induced ’ magnetic 
field due to  the electric currents in the liquid metal and duct walls. The characteristic 
ratio of the induced to applied magnetic field is R,, with typical values of 0.01 to 0.1 
for fusion reactors. We assume that R, is sufficiently small that the induced 
magnetic field is negligible, while the uniform, applied magnetic field is B = BOP, 
where $ , j  and i are unit vectors for the Cartesian coordinates with the y-axis parallel 
to the magnetic field. 

In  the Navier-Stokes equations, the characteristic ratios of the electromagnetic 
body force term, j* x B, to the inertial and viscous terms are Nand M 2 ,  respectively, 
where j *  and j denote the dimensional and dimensionless electric current densities, 
respectively. Typical values of N and M for liquid-lithium fusion cooling systems 
range from lo4 to lo5. We assume that N is sufficiently large that inertial effects are 
negligible everywhere and that M is sufficiently large that viscous effects are confined 
to thin boundary layers and to interior layers which are parallel to  the magnetic field. 
The present solution involves large, O(M$ dimensionless velocities inside boundary 
and interior layers with O(M-t) dimensionless thicknesses. All lengths are normalized 
by L.  Inertial effects in such high-velocity layers are only negligible if N 9 @ 
(Walker, Ludford & Hunt 1971). While this condition is not generally satisfied in 
fusion-reactor cooling systems, the inertialess predictions agree well with experi- 
mental measurements in rectangular ducts for N = 126000 and M = 5800, and 
also for N = 540 and M = 2900 (Hua et al. 1988). 

The parameter of primary interest here is c .  If c Q M-l or c 9 &, then the walls can 
be treated as electrical insulators or perfect conductors, respectively (Walker 1981). 
While there is an effort to  develop ceramic insulators which are compatible with hot 
liquid lithium, such insulators do not exist a t  present, so that most fusion design 
studies assume that metal walls will be necessary. A typical value of c for liquid 
lithium in contact with the structural stainless steel walls is 0.1, while a typical value 
for a steel liner which is electrically insulated from the structural walls is 0.01. If c 
and ( t / L )  are both treated as arbitrary, O( 1) parameters, then the electrical variables 
in each wall are coupled to the liquid-metal variables, leading to  rather complex 
problems. For t Q L ,  the electric potential in each wall is independent of the 
coordinate normal to the surface of the wall, neglecting O(t2 /L2)  terms (Shercliff 
1956). If we assume that there is an electrical insulator at the outside surface of each 
wall, Shercliffs thin-wall approximation leads to  a boundary condition on the liquid- 
metal variables evaluated at the wall (Holroyd & Walker 1978). If the wall separates 
two liquid-metal regions, then Shercliff s thin-wall approximation leads to a 
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condition on the jump in normal electric current density through the wall (Hua & 
Picologlou 1990). The parameter c appears in these boundary or jump conditions. 

Since the uw of stainless steel is roughly one-third of the u for liquid lithium, 
Shercliffs thin-wall assumption that t 4 L appears to imply the assumption c < 1 .  
For a long time, the small-c assumption, 

M-1 g c 4 1, 

was thought to  be appropriate for liquid-lithium fusion-reactor flows (Walker & 
Ludford 1975; Hunt & Holroyd 1977). This assumption states that the bulk or core 
of the liquid metal has a much lower electrical resistance than the duct wall, which 
in turn has a much lower electrical resistance than the Hartmann layer with O(M-') 
thickness adjacent to  the wall. When the thin-wall boundary condition with c < 1 is 
applied to  the inviscid, inertialess core solutions first presented by Kulikovskii 
(1968), certain characteristic surfaces become important. For a uniform magnetic 
field, each characteristic surface is composed of the magnetic field lines with the same 
distance between their intersections with the duct walls. For O( 1) distances, the O( 1 )  
velocity and the O(ci) electric current density must follow these characteristic 
surfaces ; only over large, O(&) distances can the flow and electric current leak across 
these surfaces (Walker & Ludford 1975; Holroyd & Walker 1978). 

Recent experiments at Argonne National Laboratory indicate that the predictions 
of the small-c asymptotic solutions with their characteristic surfaces do not agree 
with experimental measurements for large values of N and M and for c = 0.01 to  0.1 
(Picologlou et al. 1986). The ratio of the component of velocity or electric current 
density, which is perpendicular to a characteristic surface, to  the corresponding 
component, which is parallel to  the surface, is given by a factor times ct. This factor 
depends on the geometry and magnetic-field variation. For circular ducts, this factor 
is well characterized by A,, the first eigenvalue for the problem of decay to fully 
developed flow, where A, is approximately 10. Therefore, the flow and electric current 
are only constrained to follow the characteristic surfaces if A, ci < 1, which is not true 
for c = 0.01 to 0.1. The experiments show that the characteristic surfaces represent 
trends rather than rigid guides. The characteristic-surface solutions predict large 
central regions of virtually stagnant fluid with high-velocity jets adjacent to certain 
walls, while the observed flows for c = 0.01 to 0.1 involve larger velocities near the 
walls than in the central regions, but no stagnant regions. 

Talmage & Walker (1988) use Shercliffs thin-wall approximation, which neglects 
O(t2/L2) terms and which decouples the liquid-metal variables from the wall 
variables, but they keep c as an O( l),  specifiable parameter. The core solutions do not 
involve characteristic surfaces. Instead, the velocity and electric current in each core 
are governed by coupled, two-dimensional, elliptic equations in 2 and z. The 
predictions of the arbitrary-c solutions agree well with experimental measurements 
for c = 0.01 to 0.1 (Talmage & Walker 1988; Hua et al. 1988). Here we treat the flow 
in a sharp elbow with the assumptions that R, 4 1, N B &, M % 1 ,  t 4 L,  and c = 
0(1), and we compare the results to the solutions for the small-c assumption. 

Longitudinal sections of a forward elbow and a backward elbow are presented in 
figure 1. The Cartesian coordinates are oriented with the y-axis parallel to  the 
magnetic field, so that p and j are independent of y, while @ and v are linear in y, in 
the inertialess, inviscid core solutions (Kulikovskii 1968). Here, p and @ are the 
dimensionless pressure and electric potential function, while v = u i  +$+ wi is the 
dimensionless fluid velocity. Each elbow has parallel sides, which are perpendicular 
to the z-axis, and L is chosen as half the distance between the sides. In  dimensionless 
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FIGURE 1.  Longitudinal sections of two sharp elbows. The parallel sides are at z = 1 ,  where the 
coordinates are normalized by L which is half the distance between the sides. The three inviscid 
core regions, C1, C2, and C3 are separated by interior or free shear layersf. (a) Forward elbow in 
which the 2-component of velocity u is positive everywhere. (b) Backward elbow in which u is 
positive and negative in the downstream and upstream ducts, respectively. 

coordinates, the sides are a t  z = f 1, while the dimensionless distance a between the 
top and bottom is the same for the upstream and downstream rectangular ducts. For 
the arbitrary-c solution, there are three successive core regions, C1, C2 and C3, which 
are separated by one or two interior layers f with O(M-t) thickness at x = 0 and a t  
x = xo = a (cos $-sin 8),  in the forward elbow. For the upstream or downstream duct 
in either elbow, the angle between the magnetic field and the duct's centreline is 
a = 8 or a = 90"-8, respectively. Each core region is separated from the top or 
bottom by a Hartmann layer with O(M-l) thickness and from each side by a side 
layer with O ( M d )  thickness. The side layers involve O(Mi) dimensionless values of u 
and z.r, so that they carry part of the O( 1) total volumc flux, even for fully developed 
flow. Since the distance a between the top and bottom is the same upstream and 
downstream, U, is the total volumetric flow rate, divided by 2 a P .  For the small-c 
solutions there is an additional outer side layer with O(d)  thickness between the 
inner, viscous side layer with O(M-i) thickness and the core C2 for either elbow. The 
outer side layer is inviscid and arises from the Shercliff thin-wall approximation at  
the top and bottom for c 6 1 and for non-parallel top and bottom (Walker 1981). 

All electric currents are driven by the dimensionless induced electric field, 

v x $ = - w i + u u i .  

For fully developed flow in a skewed field, u is proportional to sin a, since u is parallel 
to the duct's centreline, and the induced electric field drives an electric current 
circulation through the liquid metal and walls in each cross-section. When two ducts 
are joined through an elbow, expansion, or manifold, the upstream and downstream 
fully developed induced electric fields are generally different, and the difference 
drives an additional three-dimensional electric current circulation near the junction. 
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For example, if the upstream and downstream induced electric fields have the same 
sign, but the upstream one is larger, then the three-dimensional electric current 
circulation increases and decreases the magnitudes of j, upstream and downstream, 
respectively. It often reverses the sign of j, downstream. Since the fully developed 
electric current must flow through the walls, its magnitude is controlled by the 
resistance of these walls and is proportional to c. The three-dimensional electric 
current involves currents between the upstream and downstream ducts through both 
the walls and the liquid metal. At least part of the three-dimensional current 
circulates entirely in the liquid metal, so that its magnitude may be much larger than 
the fully developed current. For the small-c solutions, the three-dimensional current 
is generally O(c5) because of its restriction to the characteristic surfaces. The local 
pressure gradient is proportional to j,. For our example, the upstream j, and 
associated pressure gradient are much larger than those for fully developed flow. If 
the downstream j, is reversed by the three-dimensional current, then there is a small 
pressure recovery. The difference between the large, extra upstream pressure drop 
and the small downstream pressure recovery is the three-dimensional pressure drop 
ApSD which is added to  the pressure drops for undisturbed fully developed flow in the 
upstream and downstream ducts. 

The forward elbow with 8 = 45" involves virtually no three-dimensional effects, 
because the upstream and downstream fully developed induced electric fields are 
identical. There is no C2 core, the two interior layers merge into one layer through 
both corners, and the flow is fully developed throughout C1 and C3. The role of the 
interior layerfis to match the jump from u < 0 upstream to u > 0 downstream. As 
8 for a forward elbow increases from 45", the upstream and downstream induced 
electric fields increase and decrease, respectively, so that the three-dimensional 
electric current circulation and other three-dimensional effects increase. Since the 
flow is inertialess, the solutions apply equally well for a reversed flow direction. The 
flow in either elbow for 8 < 45" is identical to the reverse flow in the corresponding 
elbow for 8 > 45", so that we need only consider elbows for 45" < 8 < 90". As 8 + 90" 
for a forward elbow, the upstream induced electric field approaches a maximum and 
the downstream one approaches zero. As 0 for a forward elbow increases beyond QO", 
this elbow becomes the backward elbow for 8 < 90". As 8 decreases from 90" for the 
backward elbow, the upstream induced electric field decreases, but the downstream 
one now has the opposite sign and increases in magnitude. The difference between the 
upstream and downstream induced electric fields and the associated three- 
dimensional electric current circulation increases as 8 decreases from 90" for a 
backward elbow. The difference reaches a maximum for 6 = 45", i.e. roughly 4 2  for 
8 = 45" versus 1 for 8 = 90". Moon & Walker (1990) present arbitrary-c solutions for 
the forward elbow for tan 8 = 10. Here we present the arbitrary-c solution for the 
backward elbow for 8 = 45". Neither analysis applies for 8 = QO", but the solutions 
do yield some qualitative conclusions about this special case, which are discussed in 
the final section. 

The general properties of the small-c solutions for the forward and backward 
elbows follow from the small-c asymptotic solutions for expansions and contractions 
(Walkcr 1981). Neither core C1 nor core C3 has characteristic surfaces because all 
magnetic fields lines have the same length between the top and bottom in each 
region. The flows in these cores are governed by elliptic equations in x and z. I n  C2, 
the characteristic surfaces are the x = constant sections, so that both the O( 1) u and 
the O(ci)j, must be zero in this core. For the forward elbow, all the flow from C1 and 
C3 is carried by the O(&) u and u inside the viscous inner layers at z = &- 1.  The 
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velocities are O( 1) inside the outer layers, but make a negligible, O(c4) contribution 
to  the total dimensionless volume flux 2a. The three-dimensional electric current 
between C1 and C3 is O(&) and is carried by O( l ) j ,  andj,  in the outer side layers a t  
z = k l .  The currents in the walls make a negligible, O(c) contribution. For the 
backward elbow, there are two flow paths between C1 and C3:  the viscous inner 
layers adjacent to C2 and the interior layer f a t  x = 0. As 1x1 decreases from 00, the 
flows in C1 and C3 for either elbow deviate from fully developed. This deviation 
involves two changes : (i) part of the core flow is transferred to the side layers, so that 
the fraction of the total flow in the side layers is larger a t  x = 0 or x = xo than that 
for fully developed flow, and (ii) the remaining core flow becomes more concentrated 
near z = f 1. The residual core flow at  z = 0 or z = xo is carried by the interior layer 
f to the inner layers adjacent to C2 or, for the backward elbow, from the lower part 
off for y < 0 to the upper part for y > 0. 

For the transition from the small-c asymptotic solution to the arbitrary-c solution, 
the most important changes occur in the core C2 and adjacent side and interior 
layers. The outer side layers with O(&) thickness spread across the entire duct and 
become the core. The O(1) values of u and w here now carry part of the O(1) 
volumetric flux, 2a. For c < 1, only the viscous side layers carry any O(1) volumetric 
flux in this region, but for c = O( l ) ,  both the viscous side layers and the core C2 carry 
part of the O( 1) flux. In addition, as c increases from small values to  arbitrary values, 
the O(c)  three-dimensional electric currents in the walls become comparable to the 
O(cf) currents in the outer side layer which has become the core. 

For the forward elbow, the interior layers f no longer involve O(Mi) velocities, and 
the 0(1) flow passes unchanged through these layers from C1 to C2 or from C2 to  C3. 
The only role of these interior layers is to match jumps in the O( 1 )  w and w between 
adjacent cores (Moon & Walker 1990). For the backward elbow, at least one velocity 
component in the interior layer remains O(M$, and this layer continues to carry part 
of the O( 1)  volumetric flux. We can ignore the details of the interior layer if we apply 
a solubility condition to the solutions in the adjacent core regions. After stretching 
the axial coordinate by Mi for the interior layer, we introduce the expressions for j, 
andj, from the momentum equation into the x- and z-components of Ohm’s law. We 
introduce the resultant expressions for u and w into the conservation of mass 
equation, W - u = 0. We integrate the resultant expression over a z = constant section 
of the interior layer, i.e. we integrate with respect to y and with respect to the 
stretched x, and we apply the boundary conditions on v a t  the walls. The result is the 
solubility condition that the integral from bottom to top of the core values ofj, must 
be the same on both sides of the layer (Hua & Picologlou 1990). For the interior 
layers at x = xo and a t  x = 0 in the forward elbow, this condition yields the 
relationships 

jrCl = j z c p  a t  x = xo, jZc2 = j r C 3  at x = 0, 
since j, is independent of y in each core. There is no jump in j, across either interior 
layer in a forward elbow. For the backward elbow, the condition yields the 
relationship 

cosec Oj,,, + sec Oj,,, = (cosec 0 + sec /3)jzc2 a t  x = 0. 

There is a jump (j,c2-j,cl) across f for y < 0 and a jump ( j z c B - j z c 3 )  of the opposite 
sign across f for y > 0. The interior layer which matches a jump in the O( l)j, involves 
an O(M$ v, so that there is an O( 1 )  volumetric flux parallel to the magnetic field inside 
this layer. The flow entering f from C1 splits: part enters C2 and part flows vertically 
upward across the y = 0 plane inside the interior layer. The height-averaged 
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continuity of the corej, across this layer simply states that all the upward flow inside 
the interior layer at y = 0 must enter C3 for y > 0. Therefore, part of the flow 
completely bypasses the triangular protuberance for x < 0 in the backward elbow. 
For a backward elbow for B > 45", there may also be a jump in the 0 ( 1 )  q5 across the 
interior layer, while 4 is always continuous across the interior layers in the forward 
elbow. This jump in q5 implies O(M$ values of w inside this layer. Part  of the flow 
enteringf from C1 is carried in the z-direction inside this layer to enter the side layers 
adjacent to C2 for y < 0 and a corresponding lateral flow redistribution for y > 0. 
Here we only consider the backward elbow for 0 = 4 5 O ,  so that q5 is continuous across 
f and the only 0(1) flow inside f is in the y-direction. 

2. Problem formulation 
The dimensionless equations governing the steady, inductionless, inertialess flow 

of a liquid metal with a uniform applied magnetic field and with constant properties 
are 

0 = - V p + j x j + M - 2 V 2 v ,  V - v  = 0 ,  (1% b) 

( I c ,  d )  j = - Vq5 + v x j ,  V - j  = 0, 

where p ,  j ,  v and q5 are normalized by uU,BiL, uU,B,, U,  and U, B, L ,  respectively. 
Here we treat the backward elbow shown in figure 1 (b)  with B = 45'. The inside walls 
are a t  y = fx, for 0 < x <00 and the outside walls are a t  y = +(x+A), for --A < 
x < 00, where A = d 2 a .  The flow is antisymmetric in y and symmetric in z ,  so that 
we need only treat the flow for 0 < y < 00 and - 1 < z < 0, with appropriate 
symmetry conditions a t  y = 0 and a t  z = 0. The boundary conditions a t  each wall are 

v = 0, j - 6  = cViq5, (2% b )  

where n is a unit normal to the wall, into the fluid, and Vi represents a two- 
dimensional Laplacian in the plane of the wall (Holroyd & Walker 1978). Here all 
walls have the same wall conductance ratio c. 

For M % 1,  there are inviscid core regions where the last term in the momentum 
equation (1 a )  is negligible, there are Hartmann layers with O(M-') thickness 
adjacent to  the walls a t  y = x and at y = x+A, there are side layers with O(M-i) 
thickness adjacent to  the side at z = - 1,  and there is an interior layer with O(M-t) 
thickness at x = 0. The Hartmann layers satisfy the boundary conditions (2a),  
provided the adjacent core solution satisfies the Hartmann condition 

v = u  a t  y = x  a n d a t  y = x + A .  (3) 

The jumps in j - n  and 4 across a Hartmann layer are O(M-') and O(M-*),  respectively, 
so that the condition (2 b) can be applied directly to the core solution a t  y = x and 
at y = x+A (Walker et al. 1971). The side layers involve O(Mi) values of u and v, so 
that there is a significant fraction of the total flow inside each side layer. However, 
we can ignore the details of the side layer, provided c b M-t, which is implicit in our 
assumptions that c = O(1) while M b 1 (Moon & Walker 1990). Since the jump i n j z  
across the side layer is O(M-t), we can apply the boundary condition (2b) with the 
core j, a t  z = - 1 to obtain an equation governing the electric potential function of 
the sidewall, $&x, y). The local flow inside the side layer at each value of x and y is 
proportional to the local jump in the electric potential across the side layer. 
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3. Numerical solution for core C2 
The solution in the core C2 which satisfies (a )  the inviscid version of the equations 

(l) ,  ( b )  the symmetry conditions p = $ = 0 a t  y = 0, and (c) the Hartmann condition 
(3) at y = x+A is 

where $,(x, z )  is the electric potential of the top wall. The boundary condition (26) a t  
y = x+A gives the equation 

governing $ t ( ~ ,  z)  for -A < x < 0 and - 1 < z < 0. Symmetry provides two 
boundary conditions for ( 5 ) ,  namely 

$t ( -A,  2) = 0, $,@> 0) = 0. @a,  b )  

The boundary condition (2 b)  at z = - 1 gives the Laplace equation 

governing the electric potential of the side wall $s(x, y) for the triangular area 
-A < x < 0, 0 < y < x+A.  Symmetry gives the boundary condition 

$s(z, 0) = 0. (8) 
At the intersection of the top and side a t  y = x +  A and z = - 1, the electric potentials 
in the two walls must be equal. In  addition, the electric current leaving the side a t  
y = x+A must equal the current entering the top at z = - 1 because the currents 
diverted within the walls and entering the side layer are O(t/L) and O(M-i),  
respectively. Therefore, the top potential $t and side potential $s are coupled by the 
boundary conditions 

The values of $t and $s a t  x = 0 are determined by the matching conditions with the 
core C3 across the interior layer f. One component of our iterative solution is a 
successive-over-relaxation finite-difference solution of ( 5 ) ,  (7)  with the boundary 
conditions (6), (8), (9) and with fixed values of $t and $s at x = 0. In  this finite- 
difference solution we use Ax = Ay = h = &A and Az = 0.1, so that all grid spacings 
are roughly equal. We also used grid spacings which are half these values, and the 
results are virtually identical. 

4. Analytical solution for the core C3 
The solutions for the core C3 and for the sidewall electric potential for x > 0 are 

given by the general eigenfunction expansion presented by Moon & Walker (1990) for 
0 = 45O. In  this solution 
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2cKx 
p = C,--+ C, exp (-A,x)[A, cos (Anz/1/2)+B, cosh (u,z)]: 

a 12-1 

2iB, sinh (a, z )  

C a n  

m 

$t-$b = C, C ,  exp (-A,x) aA,A, sin (A,2/1/2)+ 
n-1 

cos (An/42)+B, cosh (u,)]+exp [-$A,(y-x)] 

x [D, cos ($A,(y-x))+E, sin ($A,(y-x))] , 1 
where p(x,z) is the pressure in the core C3 fbr x > 0;  $Jx,z) and $b(x,z) are the 
electric potentials of the top and bottom walls at y = x+A and at y = x, respectively ; 
$s(x, y) is the sidewall electric potential in the parallelogram 0 < x < 00 and x < y < 
x + A ;  

In these solutions, the terms before the summations represent fully developed flow 
in this constant-area duct which is skewed a t  45' to the magnetic field, and the terms 
after the summations represent the decaying three-dimensional disturbance. The 
eigenvalues are A,, the coefficients of the eigenfunctions are C,, and the constants 
within each set of eigenfunctions are A,, B,, D ,  and En.  These solutions satisfy ( a )  the 
inviscid version of ( l) ,  (b) the Hartmann conditions (3) a t  y = x and at y = x+A, (c) 
the electrical conditions (2b) at y = x at y = x+A and a t  x = - 1,  and ( d )  the 
symmetry conditions a t  z = 0. 

There are five additional conditions at each x = constant cross-section: ( a )  the 
continuity of the electric potential at y = x or a t  y = x+A and a t  x = - 1, (b) the 
continuity of the electric current between the side and the top or bottom a t  y = x + A 
or a t  y = x and at z = - 1, and (c) a conservation of mass condition which must be 
applied because we do not treat the side layer, which carries a significant fraction of 
the flow. The last condition guarantees the existence of a side-layer solution which 
matches our core solution and our sidewall electric potential. The mass conservation 
condition is not needed for x < O  because the symmetry guarantees equal and 
opposite flows in the x-direction for y > 0 and y < 0. The five conditions a t  each 
x = constant cross-section for x > 0 give explicit expressions for the internal constants 
A,, B,, D ,  and En and give a transcendental characteristic equation for the 
eigenvalues A,. For given values of a and c ,  with 0 = 45", there is an infinite number 
of discrete eigenvalues; some are real and some are complex, where the complex 
values are complex conjugates. For the present problem, we only keep the 
eigenvalues with positive real parts, and we number the eigenvalues with increasing 
real parts corresponding to  increasingly rapid spatial decay with increasing x. The 
first twenty eigenvalues for a = 1 and c = 0.1 are : 2.075,4.164 +_ 1.287i,5.530 f 1.822i, 
6.485, 8.435f2.179i, 10.770, 11.522f4.337i, 12.012~2.706i, 12.914, 15.273, 
16.274 f 2.466i, 16.755 f 8.899i and 19.530. For this case there are six real eigenvalues 
and seven pairs of complex conjugates for the first twenty eigenvalues. There is a 
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shift from real to complex eigenvalues as either 0 increases or as c decreases (Moon 
& Walker 1990). The corresponding values of A, ,  B,, D ,  and En are not presented 
here. The remaining unknown coefficients C ,  are determined by the matching 
conditions at x = 0. Once the solutions for p ,  $t, and $b are known, the other 
variables in thc core C3 are given by the solution of the inviscid equations ( l ) ,  namely 

5. Matching solutions at z = 0 
The electric potentials of the inner walls a t  y = +x must have the same value a t  

x = 0, and this value is zero by symmetry. The pressure must be continuous across 
the interior layer f because a jump in the O( 1) pressure implies an O(Mi)j, and an 
O(M) v insidef. The electric potentials of the top and side arc continuous a t  x = 0. I n  
addition, the axial currents in the top and side must be continuous a t  x = 0, be- 
cause any 0(1) electric current from the top or side to the interior layer implies a t  
O(Mi)j ,  or j, and an O ( M ) w  or v, respectively. Therefore, the boundary and 
matching conditions a t  x = 0 are 

(10 a*) p(O+, 2) = $do+, 2) = 0, $t(O+, 2) = $t(O-, z ) ,  

Here, a variable at x = Of is determined from one of the eigenfunction expansions 
evaluated at x = 0, while a variable a t  x = 0- is approximated from the discrete 
values in the finite-difference solution for the core C2 and the adjacent side for x < 
0. The conditions (10) determine the coefficients C ,  in the eigenfunction expansions 
and the discrete values of $t and $s at x = 0-. 

Since we only use the first 20 eigenvalues, there are 21 unknowns in the 
eigenfunction expansions, including the constant pressure C,. At x = 0-, there are 10 
unknown values of $t a t  z = - 1 +O.lj, for j = 0 to  9, and 13 unknown values of $s 

a t  y = kh, for k = 1-13. We derive 44 simultaneous, linear equations governing these 
44 unknowns, and we solve these equations by Gauss elimination. Twenty-one of the 
simultaneous equations are derived from the conditions ( l o a d )  with a method of 
weighted residuals. The residual to be minimized is defined by 

= { w p b ( o + ,  z ) ] 2  + wb[$b(o+, z)12 + wt[$t(o+, z, -$t(O-> 2)12} dz I: +I [$s(O+,Y)-$s(0-,Y)l2dY, 

where wp, wb and wt are the weighting factors for the conditions on p ,  $b, and $t, 

while the weighting factor for the condition on $s is chosen as one. In  order to 
minimize the residual, we set i3€i/aC, = 0, for n = 0 to  20, which gives 21 equations. 
The coefficients C,  are multiplied by sums of integrals of products of the 
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eigenfunctions at x = 0. These integrals are evaluated analytically. There are also 
integrals of the eigenfunctions times q5,(0-, z )  or q5,(0-, y). These functions at  x = 0- 
are assumed to be piecewise constant over intervals centred at the discrete z- or 
y-values for the finite-difference solution. The eigenfunctions are integrated 
analytically over these intervals of length 0.1 or h in order to obtain the coefficients 
of the unknown discrete values of q5, and q5, a t  x = 0- in these 21 equations. The 
inhomogeneous terms in these equations involve integrals of the fully developed flow 
solution times eigenfunctions, and these integrals are also evaluated analytically. 

The equations ( 5 )  and (7) guarantee conservation of electric current in the top and 
side, respectively. Each interior finite difference equation guarantees conservation of 
current for (a )  a rectangular segment of the top, or ( b )  a square segment of the side, 
or ( c )  a cell composed of a rectangular segment of the top at z = - 1 and a triangular 
segment of the side at  y = x+A. Together, these finite-difference equations guarantee 
conservation of current for - A  < x < -0.5h. Therefore, we integrate (5 )  and (7) over 
segments of the top and side for -0.5h < x < 0 in order to complete the conservation 
of current. For the top, the integrals along bounding lines at x = -0.5h and at 
z = z j  f 0.05 are evaluated from the discrete values of q5, at x = 0 and a t  x = - h, while 
the integral along the line at x = 0 is evaluated analytically from the eigenfunction 
expansion for q5t through the matching condition ( 1 0 e ) .  For the side, the integrals 
along bounding lines at x = -0.5h and at y = yk f0.5h are evaluated from the discrete 
values of q5, at  x = 0 and at x = -h ,  while the integral along the line at x = 0 is 
evaluated analytically from the eigenfunction expansion for q5s through the matching 
condition (10 f ). There is again one special cell consisting of a triangle at the peak of 
the side and a rectangle of the top at z = - 1. These conservation-of-current 
equations for segments in -0.5h < x < 0 give 23 linear, simultaneous equations for 
the 21 coefficients C, and the 23 discrete values of q5t and q5, at x =  0-. The 
inhomogeneous terms in these equations involve the discrete values of q5, and q5, at 
x = - h. In our solution, we alternately (a )  determine C, and the discrete values of 
9, and q5s a t  x = 0- with given values of q5, and q5, at  x = -h, and ( b )  determine the 
discrete values of q5, and q5s for - A  < x < - h  with a successive-over-relaxation 
scheme and with given values of q5, and q5s at x = 0-. This iterative scheme converges 
in roughly 20 cycles with 50 iterations of the relaxation scheme in each cycle. 

6. Interior layer at x = 0 
The height-averaged value of j, = -ap/ax must be continuous across an interior 

layer. This condition is automatically satisfied in the present problem because 
aplax = 0 in the core C2, while applax has equal-magnitude positive and negative 
values in the equal-height cores C1 and C3, resyectively. The jump in applax across 
the interior layer implies a jump in u and an O(M3) v inside f .  For the present problem, 
q5 is continuous across f, so that w = 0(1), and there is no redistribution of the flow 
in the z-direction insidef. Therefore, part of the flow entering f from C1 flows across 
the y = 0 plane inside f and enters C3, all in the same z = constant plane. The 
solution in each z = constant plane is independent of the solutions at other z-values 
and is proportional to  the local value of applax in C3 at x = O+. Without inertial 
effects, the interior-layer solution is symmetric about the y = 0 plane. 

For the interior layer, the leading terms in the asymptotic expansions are 

10 
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where the variables with a subscript f are functions of ( E ,  y, z ) ,  and = ild x is the 
stretched axial coordinate. The x- and z-components of the momentum equation (1  a )  
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give 

so that (1  d )  is automatically satisfied. For Ohm's law (1  c) the x-component gives an 
expression for wf which is of no interest here, the y-component is automatically 
satisfied, and the z-component gives 

The y-component of ( 1  a) and (1 b )  gives 

The equations ( l l ) ,  (12) give jzf,jzf, and uf once (13) are solved for p f  and vf. The 
Hartmann conditions (3) still apply because the interior layer is much thicker than 
a Hartmann layer, so that 

v f = O  at  y = A  for - m < x < o o ,  
v f = O  a t  y = O  for O<x<co .  

av - f=o  at  y = o  for - C O < X < O .  
aY 

Symmetry gives 

Matching the C2 and C3 core solutions gives 

vf+O, pf+O as (+-m, 

vf+O, p f + E ~ ( O + , z ) + p ' ( O + , z )  aP as E+m, 

where p'(x, z )  is the O(M-1) pressure perturbation in the core C3. 
We introduce a stream function $ ( E ,  y, z )  where 

so that (13 b )  is automatically satisfied. The equation (13a) becomes 

The boundary conditions (14), (15) become 
$ = A  at  y = A  for - m < x < < ,  

$ = O  at y = O  for O < x < m ,  

_ -  "'-0 a t  y = o  for - m < x < < ,  
a Y  

$ + A  as (+-a, $ + y  as t + m .  
Talmage et al. (1989) present a solution for the boundary-value problem (17) ,  (18) 

which they derive for a quite different MHD interior layer. In order to interpret their 
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FIGURE 2. Values of applax in the core C3 at x = Of. 

Z 

results for the present interior layer, we rescale the axial coordinate and the vertical 
velocity with 

= M - ~ A ~ x ,  = MZA-Z- ' lap(o+,z)v. 
ax 

At y = 0, there is a discontinuity in V with V = 0 for X > 0 and V = 0.7 a t  X = 0-. 
This discontinuity is matched by an O(M-') x O(M-') region lying along the edge at 
x = y = 0. As X decreases from 0, V decreases to zero at  X = -2.9. There is a small 
negative value of Vfor X < -2.9, which means that as we enter f from C2,  v first dips 
slightly before shooting up to a large value near x = 0. As y increases, the peak value 
of V decreases for two reasons. First, the flow is turning to enter the core C3, so that 
the vertically upward flow inside f decreases linearly with y. Second the profile of V 
spreads to positive values of X. A t  y = O . U ,  V is positive for -2.9 < X < 1.6, and has 
a maximum value of 0.278 at X = -0.5. At  y = 0.8A, V is positive for roughly the 
same range of X, but the peak value is only 0.084 at X = -0.56. Finally, the fraction 
of the total flow crossing the y = 0 plane inside the interior layer and thus bypassing 

This expression is obtained by integrating (13b) with respect to 5, y and z, and by 
using the conditions (14), (15). 

7. Results 
For the results presented here, a = 1 and c = 0.1. For the weighted residual R, we 

choose w,, = w, = 1, so that the three electric potential conditions ( 1 0 b 4 )  are 
weighted equally. As c decreases, the magnitudes of the electric potentials increase 
slightly, as reflected in the value of K ,  but the magnitude of p decreases roughly 
proportionally to c .  Without a weighting factor, a large relative error in [p(0+,z)l2 
would still make only a minor contribution to R for c = 0.1. To compensate for the 
relative sizes of p and q5, we choose wp = c - ~  = 100. 

The graph of ap/ax in the core C3 at x = O+ is presented in figure 2. Integrating this 
graph gives a value of 0.5044 for the fraction of the total flow crossing the y = 0 plane 

10-2 
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FIGURE 3. Values of the x-component of velocity u at the top or bottom wall and at z = -0.05 or 
at z = -0.95. (a)  u at the top wall at y = x+A, for x > - A .  ( b )  u at the bottom wall at y = x, for 
x > 0. 

inside the interior layer f, so that roughly half the total flow bypasses the core C2 and 
adjacent side layers. Since the vertical flow inside f at  each z is proportional to the 
local jump in applax, this flow near z = - 1 is roughly three times that near z = 0. 
Indeed, half of this vertical flow for z < 0 is concentrated in - 1 < z < -0.65. 

The plots of u versus x at two values of z and at  the top or bottom are presented 
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FIQURE 4. Sketch of flow paths from the plane of symmetry y = 0 for x < 0 into the downstream 
duct for x > 0. Dotted lines denote wall boundaries, solid lines denote flow in core C2 for x < 0 or 
in core C3 for x > 0, dashed lines denote flow in the y-direction inside the interior layer at y = 0, 
and the dot-dash line denotes flow inside the side layer at z = - I .  In the core C3, flow at x = 0 is 
concentrated near the side at z = - 1 and near the outer well at y = x + A .  As x increases, some flow 
enters the core from the side layer and the core flow becomes uniform over the cross-section. 

in figure 3(a)  or 3 ( b )  respectively. A sketch of the flow patterns discussed here is 
presented in figure 4. The flow bypassing C2 through f is evident in the jumps in u 
at x = 0 in figure 3(a ) .  At a particular z ,  the jump in u is the same at y = A  and at  
y = 0 (from 0 at x = 0-). The jump is much larger at z = -0.95 than at  z = -0.05 
because the jump in apP/ax is much larger near z = - 1 than near z = 0. For x < 0, u 
varies linearly from 0 at y = 0 to the values in figure 3(a)  a t  y = x+A ; for z > 0, u 
varies linearly with y between the values presented in figures 3(a)  and 3 ( b ) .  The 
residual effect of the characteristic surfaces for c 4 1 is reflected in the fact that u at 
z = -0.95 is everywhere larger than u at z = -0.05, except in fully developed flow. 
A t  a given x and y, the plots of u versus z are roughly parabolic with zero slope at 
z = 0 (Moon & Walker 1990). The velocity which is tangential to a wall and the 
distance along a wall are given by respectively multiplying the u and x in figure 3 by 
d2. The velocities near the outside surfaces at  z = - 1 and at  y = x+A are larger 
than those near the centreplane at z = 0 and near the inside surface at y = x, with 
positive implications for heat transfer in a fusion reactor cooling system. The 
velocities in the core C2 near x = -A are very small, but this problem is easily cured 
by rounding the corner in the outside walls and thus eliminating much of the core C2. 

The electric potentials at z = - 1 and at the top wall at y = x + A  or at the bottom 
wall at  y = x are presented in figure 5.  Like u, 9 varies linearly with y. At  a given x 
and y, qj varies from 0 at z = 0 to its maximum magnitude at z = - 1. For fully 
developed flow, this variation with z is linear. For the three-dimensional disturbance, 
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FIGURE 5. Electric 

-1.5 -1.0-0.5 0 0.5 1.0 1.5 2.0 
X 

potential function C at z = - 1 and at the top 
bottom wall at y = x. 

wall a t  y = x+A or a t  the 

FIQURE 6. Electric current paths from the horizontal plane of symmetry y = 0 for x < 0 to the 
vertical plane of symmetry z = 0 for x > 0. Dotted lines denote wall boundaries, solid lines denote 
currents in cores C2 or C3, dashed lines denote currents inside the inner wall at y = x, the dot-dash 
line denotes current inside the outer wall at  y = s + A ,  and dot-dot-dash lines denotes currents 
inside the sidewall at z = - 1. 

the slope a$/az near z = - 1 is larger than that near z = 0. The electric potential is 
continuous across the interior layer a t  x = 0. 

The electric current paths discussed here are sketched in figure 6. The three- 
dimensional disturbances are associated with the electric currents flowing between 
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FIQURE 7.  Pressure p in the core C3 at z = 0 and at z = - 1.  Reference pressure variation 
indicated by dashed line. 

X 

the far upstream flow for y < 0 with q5 = - Kz and the far downstream flow for y > 
0 with q5 = Kz. For z c 0, currents flow from the positive potentials upstream to the 
negative potentials downstream, and vice versa for z > 0. In the core C3 at x = O+, 
p = j, = 0, while the electric currents in the interior and side layers are O(M-i), so 
that the three-dimensional electric currents must be inside the top, bottom and side 
at x = O+.  For z < 0, there are three current paths from x = 0' for y < 0 to x = Of for 
y > 0. First, current can flow from the inside wall a t  y = -x to the inside wall at  
y = x. This is clearly the path of least resistance, so that a major fraction of the 
three-dimensional current takes this path, which is reflected in the large value of 
aq5Jax at x = O+ in figure 5.  Also the difference between dt and q5,, in the core C3 
becomes quite large at x = 0+, reflecting a large current redistribution along 
magnetic field lines in Cl and C3 between the higher-resistance outside-wall path and 
the lower-resistance inside-wall path. Second, current can flow through the outside 
wall at y = - ( x + A ) ,  along the magnetic field lines in C2 and then through the other 
outside wall at  y = x+A. The magnitude of this current is reflected in the value of 
a+,/ax at x = 0 in figure 5 ,  while thej, along the C2 field lines is reflected in the values 
of q5t for x c 0, divided by (x+A). The third current path is through the side. Current 
inside the side at  x = 0 can complete its circuit through the side itself or through the 
outside walls at y = f ( z + A )  and along the C2 magnetic field lines. The values of p 
in the core C3 at z = 0 and at  z = - 1 are presented in figure 7. The difference, Ap, 
between these two lines equals the integral of j, from z = - 1 to z = 0, which is 
proportional to the net axial current in the core for z < 0 at each cross-section. As x 
increases, the electric circuit for the three-dimensional current is completed and 
Ap --+ 0 .  The three-dimensional current in the core reaches a maximum at roughly 5 = 
0.2. Since the core j, is the same at the top and bottom for x > 0, it cannot represent 
a net current flow into or out of the top and bottom. Therefore the axial current 
represented by j, in C3 must come from the side, as reflected by the large value of 
j, = -i?p/az at z = - 1, for 0 < z < 0.2. Therefore, electric currents come out of the 
side at z = - 1 for 0 < x < 0.2. This current flows in the plus x-direction inside the 



290 T. J .  Moon, T. Q. Hua and J .  S. Walker 

core C3. Because this duct slants upward, there is an accompanying positive jv, 
reflected in the difference between $t and #,, in figure 5 ,  for x > 0. For x > 0.2, the 
magnitude of j, = -ap/ax is larger at  z = 0 than at z = - 1, so that the electric 
current circuit for the three-dimensional current is completed across the z = 0 plane. 

The pressure drop associated with the three-dimensional effects is the difference 
between the actual pressure drop and some reference pressure drop. Here the 
reference pressure drop is given by the pressure gradient for fully developed flow in 
the cores C1 and C3 and with no pressure drop in the core C2, as represented by the 
dashed line in figure 7. With this definition, the three-dimensional pressure drop 
associated with three-dimensional effects for this elbow is 0.2. Since we only consider 
one case, we cannot indicate how this pressure drop varies with 8, c or a. 

8. Concluding remarks 
If the centreline of the downstream duct is parallel to the magnetic field, 

corresponding to 8 = 90" for either elbow in figure 1, then the pressure gradient for 
the downstream fully developed flow is reduced by a factor ofN-' to that for ordinary 
hydrodynamic flow. However, even a slight misalignment between the local 
magnetic field and the duct's centreline leads to some MHD effects, which 
dramatically increase the fully developed pressure gradient. Since perfect alignment 
cannot be achieved in practice, particularly if the direction of the magnetic field 
varies slightly for changing conditions, then the solutions for the forward and 
backward elbows for, say, tan 8 = 10, represent conservative approximations to 
nearly parallel ducts. Nevertheless, the 8 = 90" case warrants consideration as the 
transition between the forward and backward elbows. 

Hunt & Holroyd (1977) consider a sharp elbow between two circular pipes with 
a = 90" upstream and arbitrary a downstream. Based on the small-c characteristic 
surfaces, they conclude that the flow becomes concentrated near z = f 1 as the 
downstream a+O, and that the flow requires a long distance to evolve to the fully 
developed ordinary hydrodynamic flow. In  terms of our forward elbow in figure 1 (a)  
for 8 = go", Holroyd (1980), citing a private communication from J. C. R. Hunt, 
suggests that the flow from C1 turns to flow in the y-direction inside an interior layer 
at  x = -a. A t  y = a, the interior layer becomes a boundary layer adjacent to the 
inside wall at x = -a for y > a. As y increases, this layer spreads gradually across the 
downstream duct to approach ordinary hydrodynamic flow very far downstream. 
Most of the fluid in -a < 2 < 0 for O( 1) y is virtually stagnant. 

The arbitrary-c solution for the forward elbow for tan 8 = 10 indicates that the 
flow in the core C2 is concentrated near the sides at z = & 1 (Moon & Walker 1990). 
For c = 0.014.1, this concentration involves an increase in the fraction of the total 
flow inside the viscous side layers and a non-uniformity in the core solution with 
larger u a t  z = f 1 than at z = 0. There are no high velocities inside either interior 
layer, and the core flow in C2 and in C3 near x = 0 is moderately concentrated near 
the outside wall, i.e. u is larger a t  the bottom than a t  the top. As 8 increases past 90" 
and the forward elbow becomes the backward elbow with 8 close to 90°, we do not 
expect the flow to change dramatically. The flow is still concentrated near z = f 1 in 
the neighbourhood of the junction. For the backward elbow for 8 close to go", there 
is some vertical flow inside the interior layer a t  x = 0, but it is very small, so that 
virtually all the flow passes through core C2, concentrated near z = f 1, and the 
adjacent side layers. As 8 decreases from 90" for the backward elbow, the fraction of 
the flow bypassing C2 and its side layers through the interior layer f increases to a 
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maximum at 8 = 45O. For a = 1 and e = 0.1, this maximum is half the flow. For all 
cases, the flow in cores C1 and C3 near x = 0 is concentrated near the outside walls. 
We conclude that the concentration near the sides at z = f 1 predicted by Hunt & 
Holroyd (1977) occurs for both the forward and backward elbows near 8 = 90') and 
the flow concentration inside an interior layer suggested by Holroyd (1980) occurs in 
the backward elbow for 8 < 90°, with the maximum concentration for 8 = 45". 

For the present elbow with c = 0.1) the interior layer carries half the total flow. As 
c increases or decreases, this fraction decreases or increases, respectively. For much 
smaller values of c or for insulating walls with M = lo4-lo5, the interior layer carries 
virtually all the flow from C1 to C3, and the fluid in the triangular protuberance for 
x < 0 is virtually stagnant, i.e. the predictions of the small-c solutions with the 
characteristic surfaces are realized. If insulating coatings are developed for fusion- 
reactor cooling systems, the pressure drops will be greatly reduced, but the danger 
of stagnant pockets will be increased. 

Combining the present results and the forward-elbow results (Moon & Walker 
1990), we can answer the three questions of importance for the fusion reactor designs. 
The three-dimensional pressure drops associated with these elbows are relatively 
modest, corresponding to the fully developed pressure drop for the nearly 
perpendicular duct over one or two characteristic lengths at  most. The flows in core 
C3 and the adjacent side layers only deviate from fully developed for 0 < 2 < 2. The 
flow is generally more concentrated near the outside than near the inside walls and 
near z = f 1 than near z = 0, with positive implications for heat transfer. For the 
backward elbow for 8 = 45" there is very little flow in C2 near x = - A ,  but this hot 
spot is easily eliminated by rounding the outside corner. 

This research was supported by the Fusion Power Program at Argonne National 
Laboratory. Dr B. F. Picologlou of Argonne National Laboratory provided valuable 
assistance with the rationale and formulation of this problem. 
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